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1S BAYESIAN ESTIMATION PROPER FOR ESTIMATING THE INDIVIDUAL'S ABILITY?

ABSTRACT

There is a widespread belief among psychologists in the
area of applied measurement that Bayesian estimation is better
than the maximum likelihood estimation because of the additional
information, i.e., prior. For example, many researchers in the
computerized adaptive testing use Bayesian methods in the
estimation of the examinee's ability. In this paper, this myth
is debated theoretically, and in rela:tion with the behavioral
reality, Simulation studies are also used to show how bizses
caused by priors will affect the resultant estimation of the

examinee's ability.

The research was conducted at the principal investigator's laboratory,
409 Austin Peay Hall, Department of Psychology, University of Tennessee,
Knoxville, Tennessee. Those who worked in the laboratory and helped the
: author in various ways for this research include Paul S. Changas, Dete
Furlan, C. I. Bonnie Chen, Pamela Welch, Chi-Lin Tom and Robert L.
Trestman.
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I Introduction
The main characteristic which distinguishes Bayesian
estimation from the maximum likelihood estimation is that in j
Bayesian estimation we use the information given by the prior

in one way or another, in addition to the information which is

obtained directly from the set of observations. It appears to be a

common belief among many researchers who are engaged in ability

measurement that Bayesian estimation is superior to the maximum

likelihood estimation, by virtue of this additional resource of
information, the prior. In the area of computerized adaptive
testing, for example, many researchers have used, and are using,
Owen's method of Bayesian estimation (Owen, 1975), in order to
accurately estimate the ability level of an individual.

It appears only logical to correct this common belief,
however, and to say that the additional resource of information

is valuable and desirable, only if it provides us with a right

kind of information. If this is not the case, the additional
resource of information is nothing but an obstacle, which may
contaminate the estimation and lead us to biases, inefficiencies,
and many other undesirable characteristics. We must pay our
attention to this possibility, since not only such a resource

of information will create contradictions in theory, but it may
lead to serious social issues, such as the unfairness in personnel

selection, etc. The objectivity of testing can be phrased in the
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] principle of treating all the individuals of the same level of
ability fairly and equally. If some statistical theory fails
in fulfilling the requirement of this principle, then the
resultant social issues are originated in the theory itself.
In the present paper, the effect of priors in Bayesian é
estimation will be considered, mainly from the standpoint of

objective testing, which is closely related with the unbiasedness f

of estimation.

B~ o i o PTE

— e — o —

ow—




T

II Bayesian Estimators Vs. Maximum Likelihood Estimator

The main characteristic which distinguishes Bayesian
estimation from the maximum likelihood estimation is that the
former uses the prior as a part of the observation upon which
the estimation is made, whereas the latter does not. 1In the
estimation of a parameter which belongs to an individual, this
prior is, in most cases, the density function of the population
to which the individual belongs. We can say, therefore, that
the maximum likelihood estimation is a population-free estimation,
while Bayesian estimation is not.

In estimating the examinee's ability 6 , the maximum
likelihood estimator is the point of 6 which maximizes the
likelihood function, L(8) . When the estimation is based upon
the response pattern, V , by virtue of the local independence

(Loxd and Novick, 1968), we can write for the likelihood function

L(9)

(2.1) L(9)=PV(6)= I p_ (& |,
X
g

where Px (8) 1is the operating characteristic of the item response
g
X_ to item g , or the conditional probability with which the

g
examinee obtains the item score xg , given ability 6 , and
Pv(e) is the operating characteristic of the response pattern V .
It is well-known that the maximum likelihood estimator

is asymptotically unbiased and normally distributed, when
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observations are taken from identical distributions (e.g., Kendall &
Stuart, 1961). This implies that, when the test consists of n
equivalent terms, or test items each of which has an identical set
of operating characteristics, Px (8) , of the items scores,
xg (=0,1,...,mg) , the maximum %ikelihood estimate is expected
to be, approximately, equal to ability © itself, if the number
of items, n , is large enough and the amount of test informationm,
I(8) , 1s substantially large. This characteristic of the
maximum likelihood estimate also exists in a more general situation
where the test items are not equivalent (cf. Samejima, 1975).

It has been shown (Samejima, 1975, 1977a, 1977b) that this

property of asymptotic unbiasedness and normality of the maximum
likelihood estimate provides us with a good approximation even
when the number of test items is relatively small, and is a useful
characteristic in developing methods for estimating the operating
characteristics of graded item responses (Samejima, 1977¢, 1977d,

1978a, 1978b, 13978c, 19784, 1978e, 1978f).

Bayes estimator, uiv(e) , of ability 6 1s defined by
-} (- -] 1
t - =
(2.2) ulv(e) -«F PV(G) £(8) d6 [ N PV(G) £(8) 46]

where £(6) 1is the density function of 6 , or the prior, This
is the estimator which makes the expectation of the mean square

error, such that
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(2.3) E(6% - 012 £(8) a0 ,

where 96 is any estimator of © based upon the response pattern
V , minimal (cf. Samejima, 1969).

Bayes modal estimator, év , of ability © is the point

of ©6 at which the function Bv(e) , which is defined by

(2.4) Bv(e) = PV(G) £(8) ,

is maximal. This estimator is similar to the maximum likelihood

estimator in the sense that it maximizes a '"'likelihood" of a

given response pattern V . Unlike the maximum likelihood estimator,

however, Bayes modal estimator, as well as Bayes estimator,

accompanies a certain bias which is caused by the prior, and

the speed of convergence of the conditional distribution, given

8 , to the unbiased normality is slower, the characteristic which

will be observgd and discussed in the following chapters.
Compari§on of these three estimators reveals that Bayes

estimator, uiv(e) , assumes a unique finite value under the

most general condition. A sufficient condition under which a

unique maximum likelihood estimate is assured for every possible

response pattern has been pursued (Samejima, 1969, 1972, 1973a,

1973b, 1974), and it has been pointed out that some widely used

models like the normal ogive model and the logistic model

satisfy this condition, while the same is not true with the three-

parameter normal ogive and logistic models (Birnbaum, 1968).

s it o initen
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It is noted, however, that in models like the normal ogive and
logistic models the maximum likelihood estimate is negative
infinity for the response pattern which consists of n zeros,

and that for t'ie response pattern whose elements are the n
highest item scores, mg (g=1,2,...,n) , is positive infinity.

A sufficient condition under which a unique Bayes modal estimate
exists for every possible response pattern has also been
investigated. It has been pointed out that, if, in addition to
the sufficient condition for the unique maximum likelihood
estimate, the first derivative of log £(8) is strictly
decreasing in 8 , a unique Bayes modal estimate exists for every
possible response pattern. Unlike the maximum likelihood estimate,
Bayes modal estimate is finite even for the above two extreme

response patterns.

P E
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III Objective Testing and Bayesian Estimation of Ability

We can say that the purpose of objective testing is to
measure an individual's ability without biases of any kinds.

It is a common tendency that the graduate schools of many
universities of the United States adopt the Graduate Record
Examinations given by Educational Testing Service as one of the
criteria in their decision of accepting or rejecting applicants,
in preference to similar tests developed and used within each
college. This fact can be considered as an example in which
effort is taken to avoid possible biases caused by different
tests and/or different norm groups, in order to measure the
individual's ability objectively. It is well-known that some
tests are culturally biased, and the use of such tests will
result in overestimating the ability levels of individuals with
some particular cultural backgrounds, and in underestimating
those of individuals with some other cultural backgrounds. This
second example illustrates a bias which is rooted in the contents
of tests,

There is a completely different type of bias, which tends
to be overlooked by psychologists and other researchers, but which
affects the ability measurement just as strongly. Suppose that
the content of our test is perfectly valid and unbiased. Using
such a test, however, we may still result in performing a biased
measurement, which is far from the purpose of objective testing,

provided that we fail to choose a right method of estimating

el
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the examinees' ability levels. Thus the third type of bias is not
related with the content of the test, but with the theory behind
the method of estimating. the examinees' ability, which we adopt
in the process of analyzing our data.

We note that the maximum likelihood estimation does not,
in its basis, include any information from the population to
which the individual belongs, and, most importantly, there is no
possibility that the resulting estimate is influenced by anything
other than the examinee's performance itself. The same is not true
with Bayesian estimation, however.

It has been showm (Samejima, 1969) that, using LIS-U
(Indow and Samejima, 1962, 1966) and other short tests as examples,
both the regression of the Bayes estimate and that of the Bayes

modal estimate, on ability 6 , which are given by

(3.1) E(u],(8)[8) = £ w! (8) P (8)
\'f
and
A 2
(3.2) E(evle) = T BV PV(S) ,
\'4

respectively, regress toward U , when the prior is the normal

density, n(u,0) . Since these two sets of results are similar to

each other, in this chapter, we shall use only one estimator,

i.e., Bayes modal estimator, to observe the biases.
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Table 3-1 presents the discrimination parameter, ag s

and the difficulty parameter, bg , of each of the seven binary

test items of LIS-U , which follows the normal ogive model such
that {
1 ag(e-bg) -u?/2

(3.3) Pg(e) = E e du ,

-0
where Pg(e) is the operating characteristic for xg=1 of the
binary item g , or the item characteristic function. The item

information function, Ig(G) , of item g is defined by

m

8

.4 = = - &
(3.4) 1(8) ::io ng(e) ng(e) (O [1-2 (B 1+1 (P (2) ,
g

where Ix (0) 1is the item response information function, which

g
is given by
32
= - <~ 1og [1-P (8 =0
32 aez og [ g( )] Xg
(3.5) Ix (e) = ~ T3 log P (8)
g 30 xg 2
= -2 108 P () x =1
30 log g g .

The test information function, I(8) , can be written as the sum

of the item information functions, such that

n

(3.6) I(8) = I I.(8)
g=1
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TABLE 3-1

Item Discrimination Parameter, ag , and
Item Difficulty Parameter, bg , of Each
of the Seven Items of LIS-U .

Item 3g be
1 1.031 -0.860
2 1.695 -0.520
3 1.020 -0.220
4 0.800 -0.030
5 1.111 0.190
6 1.389 0.470
7 1.370 0.760

I
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Figure 3-1 presents the test information function of LIS-U , and
its square root, which is considered as the reciprocal of the
standard error of estimation defined as a function of ability © .

The regression of the Bayes modal estimator, AV , on
ability 9 , which is given in (3.2), was obtained by using each
of the four different priors, n(0.0,1.0) , =n(-1.0,1.0) ,
n(1.0,1.0) and =n(0.0,0.5) . These four regressions are shown
in Figure 3-2. For convenience, hereafter, we shall call these
four cases Cases 1, 2, 3 and 4 .

We can see in Figure 3-2 that these four conditional
means of g are substantially different from one another, in
spite of the fact that they are all estimates of O obtained
through the same test, LIS-U . We note, in addition, that
none of these four regressions is close to the straight line,
which is drawn by a solid line in Figure 3-2 indicating the
unbiasedness of estimation, and the discrepancies are large
for values of © which are far from the mean of each prior.
Discrepancies among the four conditional means are great even
at 6 = 0 , where the test information function, 1I(6) , of
LIS-U assumes as high a value as 5.55546 ; the fact which
indicates strong biases of estimation, i.e., the expectation
of ability is 0.00299, -0.16252, 0.16915 or 0.00126 ,
depending upon the prior to which examinees of ability 0.0

are assigned to. Thus the examinees who belong to Case 2 are

1------------I-llllllllllllllllllllllllllllll"
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FIGURE 3-1

Test Information Function (Sclid Line) and 1Its
Square Root (Dotted Line) of LIS-U .,
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FIGURE 3-2

| Four Regressions of the Bayes Modsl Estimate on Ability Based on LIS-U,
1 with the Priors, n(0.0,1.0) (Solid Line), n(-1.0,1.0) (Broken Line),
n(1.0,1.0) (Dashed Line), and n(0.0,0.5) (Dotted Line), Respectively. i
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severely and unqualifiedly handicapped while those who belong to

Case 3 are allowed to enjoy the advantage, regardless of the fact

that they are individualg whose ability levels are exactly the same.

These discrepancies in regression are enhanced if we shift

the true ability level from 0.0 to 0.5 , at which the test
information function assumes 4.93877 , slightly less than
5.55546 at 06 = 0.0 . The expected values of the Bayes modal
estimate are 0.44410, 0.26827, 0.63169 and 0.28436 for Cases
1, 2, 3 and 4, respectively, providing us with the range of
0.36342 . Greater discrepancies are observed, however, at
levels of € where the amount of test information is much
smaller. At © = 3.0 where 1I(8) = 0.08634 , for example, the
expected Bayes modal estimates are 1.34995, 1.07489, 1.70326
and 0.77629 , respectively, none of which is close to the true
ability level, 3.0 ; at O = -2,0 where I(B8) = 0.96397 , the
expected estimates are -1.26590, -1.61087, -1.00075 and
-0.73634 . We can see that at these ability levels Bayes modal
estimate is at the mercy of a given prior; the fact which is

against the principle of objective testing.

We note that the expected Bayes modal estimates are 0.00299

and 0.00126 at O = 0.0 for Cases 1 and 4, respectively, both

of which are very close to the true ability level, 0.0 , whereas
in Cases 2 and 3 the expected estimates are -0.16252 and 0.16915 ,

which are farther from 0.0 in the two directions. These biases




for Cases 1 and 4 come from the priors, i.e., n(0.0,1.0) and
n(0.0,0.5) respectively, showing regressions toward the
means of the separate priors. Similar tendencies are
observed at 6 = -1,0 and 6 = 1.0 , where the means of the
priors for Cases 2 and 3 are located, respectively; the
expected Bayes modal estimates are ~0.85033, -1.09301,
-0.64375 and -0.52486 at 6 = -1.0 , and 0.84548, 0.63805,
1.08443 and 0.51965 at € = 1.0 , for Cases 1, 2, 3, and 4.

It is evident from the above observations that, even if

the test itself is perfectly objective in content, the use of

Bayes modal estimator of ability will destroy the objectivity of

testing, providing the examinees with unqualified advantages or
disadvantages, depending upon the relative positions of their
ability levels and the prior to which they are assigned.

As was mentioned earlier, the maximum likelihood estimator
is asymptotically unbiased, the characteristic which suits the
principle of objective testing, although for short tests the
approximation may not be very good. It will be worthwhile,
therefore, to investigate the destruction of objectivity by
the Bayes modal estimator in comparison with the behavior of
the maximum likelihood estimator.

Figure 3-3 presents four functions, i.e., the standard

normal density function, n(0,1) (solid line), and three

approximations to n(0,1) . Each of these three approximations
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is the product of two functions, Ph(e) and [l—Pj(G)] , which

are given by the normal ogive functions such that

a (6-b,)
(3.7) Py =i [ P T2
. h '/2? e du
and
a,(6-b,)
-_]___ J j -02/2
(3.8) Pj (6) /2—‘“ e du ,

where ah = aj and bh = -bj . These two parameters, ah and bh ’
are 0.94810 and -0.35454 for the function drawn by a dotted line
in Figure 3-3, 0.94980 and -0.35391 for the one drawn by a
broken or long, dashed line, and 0.95259 and -0.35287 for the
one drawn by a short, dashed line, respectively. These three
approximations are obtained by setting the product of the two
functions equal to the standard normal density function at
6 =0.3,06=0.6 and 6 = 0.9 , respectively, in addition
to 6 = 0.0. We notice that these four curves, including n(0,1) ,
in Figure 3-3 are practically indistinguishable.

We notice that the formulas in (3.7) and (3.8) are identical

with the item characteristic function in the normal ogive model

on the dichotomous response level, which is shown as (3.3).

This implies that the prior, n(0,1) , is practically the same
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as the product of the two operating characteristics of the
hypothetical binary items, h and Jj , for the response pattern,
(1,0) . The Bayes modal estimator with the prior n(0,1) can
be considered, therefore, as the maximum likelihood estimator,

obtained from the response pattern on LIS-U plus additional

two responses, 1 and 0 , to the hypothetical binary items,

h snd j . Note that chese two additional item responses are
always 1 and O , regardless of the true abiiity level.
Let V* denote any response pattern on the two hypothetical
test items, h and j . Since both are binary items, there
are only four possible response patterns V* , i.e., (0,0),

(0,1), (1,0) and (1,1) . The operating characteristic,

Pv*(e) , of the response pattern V* is given by
r- [1—Ph(6)][1—Pj(6)] for V*'=(0,0)
- [1-Ph(6)] Pj(e) for Vx'=(0,1)
(3.9) Pyx (8) <
= Ph(e) [l-Pj(G)] for V*'=(1,0)
‘ - Ph(e) Pj(e) for Vx'=(1,1) ,

where Ph(e) and Pj(e) are the item characteristic functions
of the hypothetical binary items, h and j , which are given
by (3.7) and (3.8), respectively. Figure 3-4 presents the

operating characteristics of the four response patterns with

a = aj = (0,95 and bh = --bj = -0.35 .
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FIGURE 3-4

Operating Characteristics, pv,(e) , of Four Possible Response

Patterns, (0,0) , (0,1) , (1,0) and (1,1) , of Hypothetical
Binary Items, h and 1} .
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As we can see in Figure 3-4, although the probability is
highest at 6 = 0.0 for V*'= (1,0) compared with those for
the other three, i.e., 0.397 against 0.233 for V*'= (0,0) ,

0.137 for V*'= (0,1) and 0.233 for V*'= (1,1) , and this
tendency holds in the vicinity of this ability level, at

0 =-0.4 and O = 0.4 it is already exceeded by the
probabilities for V*'= (0,0) and V*'= (1,1) , respectively,
i.e., 0.367 against 0.395 1in each case. If we shift the
ability level from 0.0 to #1.0 , #1.5, *2.0, *2.5, 3.0
and *3.5 , the probability for V*'= (1,0) decreases rapidly
relative to either the probability for V*'= (1,1) or the one
for V*'= (0,0) , 1.e., 0.242 vs. 0.659 , 0.132 vs. 0.829 ,
0.058 vs. 0.929 , 0.020 vs. 0.976 , 0.006 vs. 0.993 and
0.001 vs. 0.998 , respectively. In other words, at 8 = 2.0 ,
for example, chances are only 58 times out of 1,000 that the
examinee of this ability level obtains (1,0) for V*' | in
comparison with 929 times out of 1,000 for V*'= (1,1)
As far as we use Bayes modal estimator, however, it is treated

as 1f chances were 1,000 times out of 1,000 for the examinee

of this ability level to obtain (1,0) for Vv*' ! It is no
wonder that the conditional expectation of iLhe Bayes modal

estimate, given € , regresses toward the center, which indicates %
the tendency that examinees of lower ability levels obtain higher

values of the Bayes modal estimate and those of higher levels




obtain lower values of the Bayes modal estimate. The effect

must be especially strong when the number of items in the test

is relatively small. Note that this tendency is relative to

the prior, to which the individual is assigned. In other words,
the hypothetical test items h and j , whose item characteristic

functions approximate the prior, differ from one population to

another, the fact which explains the relative positions of the
four regressions in Figure 3-2 . This additional response
pattern, (1,0) , for the hypothetical test items h and j
creates nothing but biases which contradict the principle of
objective testing.

Although, in the above examples, normal density functions
were solely used for priors, we can see that the same logic
can be applied for priors of different shapes. The resultant
bias caused by Bayesian estimation depends upon the particular
shape of the prior, and the set of hypothetical items and the

specific response pattern, whose operating characteristic

approximates the prior.
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IV Bayes Modal Estimate When the Amount of Test Information Is
Large

In the preceding chapter, we observed the bias caused by the
Bayesian estimation using Bayes modal estimator with a relatively
short test, LIS~U, Since most priors can be approximated by the

product of the operating characteristics of a relatively small

number of hypothetical items, it is expected that the effect of a
prior will be less dominating in the resultant estimation of ability
if the test is longer and more informative, i.e., 1f the test
information function assumes high values for the entire range of
ability of our interest. In this chapter, therefore, we shall

observe the effect of priors in Bayesian estimation using two

hypothetical tests, Test A and Test B, each of which provides us
with an approximately constant amount of test information, 21.6 ,
for the interval of 6 , [-3.0, 3.0] (cf. Samejima, 1977c). Test
A consists of thirty-five graded test items with mg=2 for each

item, while Test B consists of twenty items with mg=3 for every

ftem., All of these graded test items follow the normal cgive

model on the graded response level, whose operating characteristic,

PRSI ION A Y

P (8) , of the item score X, (=O,1,...,mg) is given by

-3
a (6-b_ ) 2
(4.1) P (9) = /g; g xg e Y /2 au | :

where 4




. b - —————— . LA
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and

4.3 a >0.

(4.3) 2
AJ Table 4-1 presents the discrimination parameter, ag , and
; the two difficulty parameters, bX for x_ =1, 2, of each of
3 g =4

the thirty-five items of Test A. Table 4-2 also presents the

discrimination parameter, ag , and the three difficulty parameters,

"l WSS

bx for xg =1, 2, 3, of each of the twenty items of Test B.

® For each of the ome hundred hypothetical examinees, whose
ability © distributes approximately normally (cf. Samejima,
1977¢), both the maximum likelihood estimate and Bayes modal
estimate were obtained upon a response pattern, which was calibrated

by the Monte Carlo method, for each of Tests A and B. Figure 4-1

presents these two estimates plotted against the true ability ©

;

for each of the one hundred hypothetical examinees. We can see in

e

these two graphs of Figure 4-1 that Bayes modal estimate, which is
represented by solid triangles, tends to regress toward the center,
in comparison with the maximum likelihood estimate, which is drawn
by crosses, for both Tests A and B, although the tendency is less

§ conspicuous than in the case of LIS-U., Th®: sample linear }egression

of any estimator 6% on ability 6 1is given by ay + ale , where

(4.4) Ay = Mgy - (56*/58) Corr. (8, 6%) Mg

and
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TABLE 4-1

Item Discrimination Parameters,
Two Item Difficulty Parameters,
b2 » of Each of the Thirty-Five Graded
Items of Test A.

a_, and the
g

by

Item g ag bl b2
1 1.8 -4.75 -3.75
2 1.9 ~-4.,50 -3.50
3 2.0 -4,25 -3.25
4 1.5 ~4,00 -3.00
5 1.6 -3.75 -2.75
6 1.4 -3.50 -2.50
7 1.9 -3.00 ~2.00
8 1.8 -3.00 -2.00
9 1.6 -2.75 -1.75

10 2.0 -2.50 -1.50
11 1.5 -2.25 -1.25
12 1.7 -2.00 -1.00
13 1.5 -1.75 -0.75
14 1.4 -1.50 -0.50
15 2.0 -1.25 -0.25
16 1.6 -1.00 0.00
17 1.8 -0.75 0.25
18 1.7 -0.50 0.50
19 1.9 -0.25 0.75
20 1.7 0.00 1.00
21 1.5 0.25 1.25
22 1.8 0.50 1.50
23 1.4 0.75 1.75
24 1.9 1.00 2.00
25 2.0 1.25 2.25
26 1.6 1.50 2.50
27 1.7 1.75 2.75
28 1.4 2.00 3.00
29 1.9 2.25 3.25
30 1.6 2.50 3.50
31 1.5 2.75 3.75
32 1.7 3.00 4,00
33 1.8 3.25 4,25
34 2.0 3.50 4.50
35 1.4 3.75 4.75

IV-3
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TABLE 4-2

, and the

a
g

Item Discrimination Parameters,

WSl - aeit

b,

b, ,

Three Item Difficulty Parameters,

and b3 , of Each of the Twenty Graded

Items of Test B.

50517060590382457185

| I

50517060510382457185

:

Fiaddiiggocodaddddy
!

50517060510722457185

! [ | [}

03225896365892659280
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Item g

HANMNMTNONOONOANMENONONO
L B I B IR B B B B B




REGRESSION

— T ‘1
-26- IvV-5 i
]

-3.0 -2.0 -1.0 0.0 1.0 20 3.0
LATENT TRAIT ©

FIGURE 4-1

Maximum Likelfihood Estimates (Crosses) and Bayes Modal Estimates (Triangles)
of Ability for One Hundred Hypothetical Examinees Whose Ability Distributes
Approximately ¥(0,1) , Obtained Through Test A .
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FIGURE 4-1 (Continued): Those Obtained through Test B .
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(4.5) 0 = (se*/se) Corr.(68,6%) ,

with M and s representing the sample mean and the sample
standard deviation, respectively. Replacing 6% by the maximum
likelihood estimate & , the two coefficients, ao and o, of
the sample linear regression were calculated for each of Tests A
and B, and are presented in Table 4-3. We can see from this result
that the sample linear regression for Test A is almost identical
with the straight line drawn in Figure 4-1, indicating the unbiased
estimation, since 0.9933 is very close to unity and -0.0088 to
zero. For Test B, the sample linear regression is flatter than the
line of forty-five degrees, showing regression toward the center,
although the degree of regression is very small. The corresponding
set of coefficients were calculated for the Bayes modal estimate,

é , for both Tests A and B, and are shown in the same table. We
can see that for both tests Bayes modal estimate tends to regress
toward the center more strongly. This tendency is far less than it
is for a short test like LIS-U, however, the fact which is
anticipated from the difference in the amounts of test information
for this range of 6 .

As another example, Bayes modal estimate was obtained for
each of five hundred hypothetical examinees, whose ability levels

differ from -2.475 to 2.475 with the step of 0.05 , with five

examinees sharing each ability level. The estimation was made

upon the response pattern of Test A, which was calibrated by the




TABLE 4-3

Coefficients of the Linear Regressions of the
Maximum Likelihood Estimate (MLE) and the Bayes
Modal Estimate (BME) on Ability 8 , for Ome
Hundred Observations on Each of Tests A and B.

ao ozl
T
S MLE -0.0088 0.9933
t  BME -0.0081 0.9476
A
T
¢ MLE 0.0025 0.9617
t BME 0.0027 0.9201
B
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Monte Carlo method, using each of the four priors, n(0.0,1.0) ,
n(-1.0,1.0) , n(1.0,1.0) and n(0.0,0.5)

Figure 4-2 presents the mean of the five Bayes modal
estimates thus obtained for each of the one hundred levels of €& ,
which is plotted by a dot, together with the corresponding mean
of the five maximum likelihood estimates, which is represented by
a cross, for each of the four priors. Examination of each of
these four graphs reveals the anticipated bias of the Bayesian
estimation, i.e., the tendency to regress toward 0.0, -1.0, 1.0
and 0.0 , respectively, although it is even less conspicuous than
in the preceding example, except for one case in which the prior
is n(0.0,0.5) . The five sets of coefficients of the sample
linear regressions of the five hundred estimates on ability were
calculated in the same manner as in the preceding example, and are
shown in Table 4-4. Again the sample linear regression of the
maximum likelihood estimate is practically identical with the
straight Iine of forty-five degrees, with the two coefficients,

o = -0.0058 and o = 1.0047 , being so close to zero and unity,
respectively, while the other sets of coefficients for the four
sets of Bayes modal estimates indicate flatter lines, suggesting
separate and anticipated regressions.

From these results, it is obvious that even with an

informative test having a large amount of test information, like

21.6, for the entire range of ability 8 of our interest the
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FIGURE 4-2

Conditional Mean of the Five Maximum Likelihood Estimates (Crosses), and that
of the Five Bayes Modal Estimates (Dots), of Ability for Each of the
One Hundred Levels of Ability for Test A. The Prior for
the Bayes Modal Estimates Is n(0,1) .
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FIGURE 4-2 (Continued): The Prior is n(-1,1) .
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FICURE 4-2 (Continued): The Prior is n(l,1) .
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FIGURE 4-2 (Continued): The Prior is =n(0.0,0.5) .
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TABLE 4-4

Coefficients of the Linear Regression of Each
of the Five Estimators on Ability 6 , for
Five Hundred Observations on Test A. The
Five Estimators are the Maximum Likelihood

Estimator (MLE) and the Four Bayes Modal
Estimators with Different Priors.

(10 Ol.l
MLE ~0.0058 1.0047
BME
n( 0.0,1.0) -0.0053 0.9591
n(-1.0,1.0) -0.0500 0.9592
n( 1.0,1.0) 0.0395 0.95390
n( 0.0,0.5) -0.0039 0.8456
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effect of a prior in Bayes modal estimation appears in the form
of bias, which was observed with a shorter test like LIS-U
whose maximum amount of test information is 5.55546 . We can
see that, as we increase the amount of test information, Bayes
modal estimate approaches the maximum likelihood estimate. This
implies that Bayes modal estimate, too, has the asymptotic
unbiasedness, as the maximum likelihood estimate does. The
convergence to the unbiasedness is slower for the Bayes modal
estimate, however, since Bayes modal estimate must 'shake off"
the effect of the prior in the process of approaching the

unbiasedness. We can say that the prior is nothing but an

obstacle whose effect should be gotten rid of in order to approach

the unbiasedness of estimation, which is essential for

objective testing.
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V Effect of the Prior in Tailored Testing

We shall observe here how the prior affects the resultant
ability estimation in tailored testing, where a single item is
selected from an item pool and presented to an individual
examinee, sequentially. A tailored testing situation is simulated
with an hypothetical item pool, in which there are nine binary
item groups, each‘of which consists of a large number of
equivalent, binary test items following the normal ogive model,
which is given by (3.3) and whose item discrimination
parameter, ag , and item difficulty parameter, bg , for the
item group g are shown in Table 5-1. We assume eleven
hypothetical examinees, whose ability levels are -2.25, -1.75,
-1.25, -0.75, -0.25, 0.00, 0.50, 1.00, 1.50, 2.00 and 2.50,
respectively. We also assume four different situations, in
one of which the maximum likelihood estimation is applied for
the ability estimation, and in the other three Bayes modal
estimation is used, with three different priors, n(0.0,1.0) ,
n(0.0,0.8) and n(0.0,0.5) , respectively. In the first
situation of maximum likelihood estimation, an item from group
5 is always chosen as the first item to present to an examinee,
and, depending upon the examinee's response to this item, the
second item is chosen either from group 1 or group 9. That is

to say, if the examinee's response to the first item is correct,

then the second item is chosen from group 9, i.e., the most
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TABLE 5-1

Item Discrimination Parameter, ag , and Item
Difficulty Parameter, bg s of Each of the Nine

Groups of Binary Test Items Used as the Item
Pool in the Simulated Tailored Testing.

Item a b

Group g g
1 1.20 -2.00
2 1.60 -1.50
3 2.00 -1.00
4 1.40 -0.50
5 1.80 0.00
6 1.30 0.50
7 1.70 1.00
8 1.90 1.50
9 1.50 2.00




difficult item group, and, if it 1is incorrect, then the second

item is chosen from group 1, the easiest item group. The
examinee will stay with the same item group for the following
items, until he fails in answering an item correctly if it is
group 1, and until he succeeds in answering an item incorrectly
if it is group 9. Thereafter, since every current likelihood
function has a local maximum, an item from the item group whose
item information function, Ig(@) , which is defined by (3.4),
is the greatest at the value of current maximum likelihood
estimate is chosen and presented next, and this will go on
until the amount of test information at the current maximum
likelihood estimate reaches or exceeds a certain criterion.

All the responses of the hypothetical examinees are calibrated
by the Monte Carlo method.

In Bayesian estimation, the first estimate is the modal
point of the prior. The second item is an item chosen from
the item group whose item information function, Ig(e) , is
the greatest at the modal point of the prior, and the third
item is from the item group whose item information function
is the greatest at the current Bayes modal estimate, and so
forth, and the presentation of a new item is terminated when
the amount of test information at the current estimate of the

examinee's ability has reached the same criterion used in the

maximum likelihood estimation.
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Figures 5-1 through 5-3 present the result of these four
simulated tailored testing for each of the eleven hypothetical
examinees. In each of these three figures, the sequential
result of the maximum likelihood estimation is presented by
solid triangles, and that of one of the three Bayesian
estimations is shown by hollow circles. In each Bayesian
estimation, the first circle is located at the modal point of
the prior, so the actual number of test items used in the
simulated tailored testing is one less than the number of
circles. The number of test items which are presented to each
examinee in each situation is shown in parentheses in Table 5-2,
following the eventual ability estimate. The amount of test
information used as the criterion for terminating the
presentation of a new item in this simulated tailored testing
is 20.0.

As was the case with the previous examples, the effect
of a prior appears in the form of underestimating the ability
levels of examinees which are much higher than the mean of the
prior, and of overestimating those which are much lower, in
all three cases of the Bayesian estimation, with some exceptions
at 6 = -2.25 ., Note that, in comparison with these results,
errors of measurement in the maximum likelihood estimation are

more randomly distributed in both directions. We notice,

moreover, that even in the two exceptions at 6 = -2.25 , it
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took 28 and 35 test items to make up for the effect of the
priors, n(0.0,1.0) and n(0.0,0.8) , respectively, until the
estimates, ~2.3161 and -2.4097 , which are slightly less '

than but close to the true ability level, -2.25 , were obtained.

4

T

—LYE L X

These two numbers of items, 28 and 35 , are far too large i
compared with the average number of test items used in these
forty-four sequences which turned out to be 14.70 .

It is interesting to note that, when the prior is

n(0.0,0.5) , it took only 16 items in the sequence, compared
with 28 and 35 in the other two Bayesian estimations,

before the testing is completed for the examinee whose ability
level is =2.25 . The eventual Bayes modal estimate is -1.5683 ,
however, which is far away from the true ability level =-2.25 ;
the fact which shows a far stronger effect of the prior than

the other two cases. This indicates that the effect of the

prior was so strong that the testing could not "correct" the

blas caused by the prior throughout the whole process of

tailored testing.

A similar tendency of "trade-off" between the accuracy
of ability estimation and the number of test items exists in
the relationships among the four ability estimates of the same
examinee when we lower the criterion for terminating the

presentation of a new item. If we use I(6) = 15.0 as the

criterion they are -2.2352 (18) , -2.2796 (21) , -2.0694 (18)
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and -1.4207 (11) , arranged in the order of the maximum
likelihood estimate and Bayes modal estimates with n(0.0,1.0) ,

n(0.0,0.8) and n(0.0,0.5) as the prior, respectively, with

the corresponding number of items used in each tailored testing
in parenthesis; if we use I(86) = 10.0 they are -2.2099 (13) , )
-1.9812 (12) , -1.7915 (12) and -1.1931 (7) . The situation
will not be improved even if we switch the criterion to the
stability of successive estimates in tailored testing. If, for
example, we terminate the presentation of a new item right
after three successive estimates stayed within the range of

$+0.075 of the separate, preceding estimates, the resulting four

estimates and the numbers of test items for the examinee

whose ability level is ~2.25 are -2.2994 (11) , —1.8812 (12)

-1.9062 (14) and -1.3781 (10) , respectively. For the
examinee of the other deviated ability level, 2.50 , using the
same convergence criterion, the results are 2.8183 (11) ,

2.1251 (11) , 2.1130 (11) and 1.8152 (15) , compared with
those obtained with the criterion of 1I(6) = 20.0 , which are

2.5415 (21) , 2.2822 (19) , 2.2251 (21) and 1.9280 (18)

Since only 3 cut cf 1,000 people are outside of the
range of three standard deviations plus or minus the mean, 1if
the population ability distribution {s normal, chances are
very slim that an examinee whose ability level is -2.25 or

2.50 1s assigned to the prior, n(0.0,0.5) , or even
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n(0.0,0.8) . In practice, however,

V=41

such a situation is more

likely to happen, since the function assumed for the prior is

more or less arbitrary, and, furthermore, the assignment of

individuals to a specific prior itself is more or less

arbitrary, using their sex, ethnic background, and so forth.

We must say, therefore, Bayesian estimation applied for

personnel selection, for example, could cause a serious problem

of unfair discrimination, even if the content of the test

itself is perfectly valid.

The sequential results of the four ability estimationms

in the simulated tailored testing for the eleven hypothetical

examinees are presented in Appendix as Tables A-1 through A-4.
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VI Some Criticisms on the Common Belief in Bayesian Estimation

Many researchers who use Bayesian estimates in favor of
the maximum likelihood estimate refer to the two aspects which
they think are the advantages of the Bayesian estimation over

the maximum likelihood estimation. These two aspects are:

(1) While Bayesian estimation provides us with seemingly
reasonable finite values as the estimates for all the
response patterns, the maximum likelihood estimation gives
us positive and negative infinities for the two extreme
response patterns, (0,0,...,0)' and (ml,m

t
2,...,mn) s

respectively.

(2) The frequency distribution of tie resultant set of
maximum likeclihood estimates is mure scattered than the
true ability distritution, or the prior, whereas that of

Bayesian estimates is not.

It should be recalled that with each of the two
hypethetical tests, i,e., Tests A and B, which were introduced
in Chapter 4, every single hypothetical examinee of the two
groups obtained a finite maximum likelihood estimate. This
results from the fact that the amount of test information of
eachtest 1, as large as 21.6 for the interval of 9 , (-3.0,3.0)
the range within which all the examinees' ability is located,

and for this reason none of the examinees obtained either of




the two extreme response patterns,
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In fact, it can be proved

easily that the conditional probability with which the examinee
of a given ability level obtains the response pattern, (0,0,,..,0)',
or (ml,mz,...,mn)' , approaches zero as the amount of test
information fncreases at that level of © . It is highly unlikely,
therefore, that an examinee whose ability level is located in

the interval of 6 , (-3.0,3.0) , will obtain one of these two
extreme response patterns, if the test is highly informative
throughout the interval, as is true with both Tests A and B.

If the test is short, like LIS-U , however, it is more
likely that examinees obtain one of the two extreme response
patterns. This test, LIS-U , was originally developed for
the purpose of classifying a group of examinees, whose ability
distributes, approximately, normally with zero and unity as the
two parameters, iInto small subgroups of equal sizes (c¢f. Indow
and Samejima, 1962, 1966). The test information function assumes,
therefore, high values around 6 = 0.0 , and lower values as 6
departs from zero, as we can see in Figure 3-1, since for the
above purpose it is not important to estimate the ability of
very bright or very dull examinees accurately, Note that for
the classification purpose, negative and positive infinities
do not interfere with our process, although as the values of

estimates they are far from being acceptable.

It is frequently observed, however, that a researcher uses
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a test whose test information function is bell-shaped, like the
one for LIS-U , for other purposes without giving much thought

to the inaccuracy of estimation at deviated values of 6 . This
inaccuracy is rooted in the test itself, but he tends to blame

the method of estimation, complaining that they obtained positive
and negative infinities for some examinees as their maximum
likelihood estimates of ability 6 . When they come across

this result, most researchers turn to Bayesian estimation, as

if it gave a solution to the problem. We must note, however,

that the seemingly acceptable finite estimates for the two

extreme response patterns are basically resultant from the prior
only, and the test itself is simply powerless in the entire
process of estimation; the fact which explains the large differences
among the regressions of the Bayes modal estimates on ability @
with different priors, as was observed in Chapter 3. When
researchers use a Bayesian estimate in such a situation, therefore,

they are simply covering up the deficiency of the test they

chose, pretending as if the test had enough power to estimate

the ability accurately, while the truth iIs that the amount of

test Information provided by the test at those levels of ability
1s so small that no real testing was performed on these levels
of ability. It is the researcher who must take the blame for the
failure in choosing a right test, not the maximum likelihood

estimation.
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As for the second aspect, we must be aware of the fact
that, as long as there exists some amount of error of estimation,
the frequency distribution of the resultant set of estimates

should be expected to have a larger variance than the true

ko RSO S et g

ability distribution. It has been pointed out (Samejima, 1977c)
that for any unbiased estimator, XA , of ability 6 , we can

write for the variance of A
(6.1) Var.()) = Var.(9) + E[Var.(kle)] > Var.(8) .

Since the maximum likelihood estimate is asymptotically unbiased,
(6.1) approximates the relationship between 6 and the maximum
likelihood estimate, 8 , when the amount of test information

is large enough for the entire range of & within which the
examinees' ability is located. If the conditional expectation
of A, given 8 , is constant, i.e., Var.(lle) = g2 ,

then we can rewrite (6.1) in the form
(6.2) Var.(é) = Var.(8) + o2 .

When the test information function assumes a large, constant value
for the entire interval of 6 within which the examinees' true
ability is located, i.e., I(8) = C >> 0 for this interval of

@ , the maximum likelihood estimate conditionally distributes
approximately normally, given 6 , with 6 itself and C-l/2

as the two parameters. Thus we can write in such a situation

)
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(6.3) . Var.(8) = Var.(8) + C—l > Var. (9)

If we use either Test A or Test B as our test, for example, the

sample variance of the maximum likelihood estimate is expected

S Al

to be approximately 0.046 larger than the population variance

of ability 6 , regardless of the value of Var.(6)

It is evident, therefore, if some estimator of ability
6 provides us with an expected sample variance which is the
same as the population variance of the true ability 6 , there

must be a certain bias which makes the resultant estimate regress

toward the central tendency of the ability distribution, as we
have seen in the Bayes modal estimate in Chapters 3, 4 and 5.

We must consider, therefore, that the characteristic of the
maximum likelihood estimate described in (2) is a logical result
of the asymptotic unbiasedness, whereas the characteristic of

Bayesian estimates is a problem, which is caused by its

biasedness.
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V11 Estimates for the Two Extreme Response Patterns i

As we have seen in the preceding chapter, the probability

is very low that some of our examinees obtain one of the two
extreme response patterns, (0,0,...,0) and (ml,mz,...,mn) ,

i1f we choose a right test. When the test items follow one of

& the models which satisfy the unique maximum condition (Samejima,
i 1969, 1972), like the normal ogive and logistic models, the

E amount of test information for the range of 6 in which the
examinees' ability is located is a useful measure for the
appropriateness of the test. If our test is informative

enough for the entire range of ability 6 of our interest,

as are Tests A and B in the examples in Chapter 4, chances are

very slim that some of our examinees obtain one of the extreme

I T .

response patterns and, consequently, negative or positive
infinity for their maximum likelihood estimates.

We must note, however, that even with such tests as
Tests A and B and with groups of examinees whose ability
distributes within the interval of 6 for which the tests are
informative, it can still happen, though very rarely, that some
examinees obtain negative or positive infinity as their maximum
likelihood estimates of ability. Our question is, thereforg,
if there is any way to avoid such a situation, without losing

the perspective of objective testing, which we shall not be able

to accomplish by turning to Bayesian estimation.
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From the purpose of objective testing, it is obvious
that we should find a solution for this problem without using
any information which the test itself does not provide. 1In
so doing, we shall make a population-free estimation, in which
examinees are solely evaluated from their performances in the
testing.

Hereafter, we shall denote the two extreme response

patterns, (0,0,...,0)' and (ml,mz...,mn) , by V-min and

V-max , respectively. We notice that the operating

characteristic (8) strictly decreases in 6 , and

PV—min
Pv_max(e) strictly increases in 6 , as long as our test

items follow a model, or models, like the normal ogive and
logistic models. Thus we can conceive of a critical point,

ec , which satisfies

|
o
(2
o]
o]
@
\%
@

(7.1) PV-min(e) = c

(8)

PV-max - c ’

o
o
[y
o]
n
@

IA
@

Let Q be the product of the two operating characteristics

of the response patterns, V-min and V-max , such that

(7.2) (8) (9)

Q= PV—min PV—max

We define sc as the point of 6 at which this product is
minimal. By virtue of the assumption of local independence

(Lord and Novick, 1968), ec is the solution for the equation:
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(7.3) 75? log Q = 2 log P

36
g=1 g
o)
+ I —— log P_ (8;x =m )
a0 b'<
g=1 g & 8
n n
= I A (5;x=0)+ ¢ A (8;x =m)
X
g=l g B g=l *g &
=0,

where Ax (6) 1is the basic function (Samejima, 1969, 1972) of

g
the item response xg . It is interesting to note that this

critical value ec is the maximum likelihood estimate of
ability 6 for the response patterm, (0,0,...,0,1,1,...,1) , on
the test of 2n binary items, the first n items of which

have Px (6;xg=l) (g=1,2,...,n) , and the second n items of
-4

which have Px (6;x8=mg) (g=1,2,...,n) , as their respective

°3 1

item characteristic functions.

We shall aim at finding finite substitutes for the two

~

maximum likelihood estimates, eV—min and eV—max » which j

are negative and positive infinities, respectively, in such %

a way that the substitution should provide us with a regression

which is close enough to 6 , i.e., the unbiasedness of the

* %*
estimator, for some range of 6 . Let eV—min and eV—max

denote such estimates, and 6* be the resultant estimator,

such that
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= * -
eV—min for V-min
* = * -
(7.4) 8 BV—max for V-max
= éV for all the other response
patterns,

We can write for the regression of 6* on ability 6 such that

(7.5) ECex|0) = £ B, P,(8) + 8% . P, . (9)
V#V-min vV 'V V-min V-min
V#V-max
*
+ eV—max PV—max(e)

T 8, P (9) + %
V#V-min v v
V#V-max

-min PV—min(e)

for 6 < 9
(o

e

T 8, P (8) + (8)
V#V-min v
V#V-max

g%
V-max PV—max

for 6 >0 _ .
c

1f this estimator, §* , provides us with an approximate
unbiasedness for a certain range of 6 , (8, 8) , then we

shall be able to write

( vvomin Y Py(8) + 8§ _pin Pyogin(® = 0
V#V-max
for 6 < 8 < 8
(7.6) W
V#mein by PV(e) + eG—max PV-max(a) =0
V#V-max _ .
L for 8 < 6 <8 . by

C {
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In practice, we must search the interval of
which such an estimator, 6% , is availiable,

a specific test of our interest. From (7.6),

VIiI-5

6, (8, 8 , for
in relation with

we can further

write
[ I 6 e P, (6) d6 + Bk E P (8) de
V#V-min v 0 \' V-min 9 V-min
V#V-max
(7.7)
. {5 8
r 8 P (8) de + & P (8) ae
V#V-min v 5 v V-max ec V-max
V#V-max ¢
L
=1 (52 _ g2
=5 (B 82) .
Thus the two estimates, 6% . and ©0* , can be obtained by
V-min V-max
r l,., 2 A eC
e . = [5(8% - 84) - b ] P.,(68) d8]
V- =
min 2 ¢ V#V-min \Y 0 v
V#V-max
rec -1
(7.8) [ Py_min (8 d6)
A
L (%
p* = [=(82 - 82) - z 8 P (6) de]
\ V-max = '2 ¢ vgv-min ¥ J o ¥
c
V#V-max
8 -1
( . Py_nax(®) 461
c

with some appropriate values for 8 and 6 .

For the purpose of illustration, we us

e LIS-U again, and

PNy e - 2
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put our effort upon finding a suitable interval, (8, §) , and

and 6* which

. o x
the corresponding two estimates, ev—min V-max °

substitute for negative and positive infinities, respectively,

in the maximum likelihood estimation. We must be aware that

this short test, LIS-U, is not designed for estimating a wide
range of ability © with high accuracy, as was explained in the
preceding chapter. This implies that we should expect the
interval (s, 6) to be a relatively small one, for which the test

information function, I(€) , assumes reasonably high values (cf.

Figure 3-1.)

We obtained -~0.00880 for the critical value, GC , for

LIS-U, which is the solution for (7.3). For the endpoints of

the interval, § and 6 , we used eleven different sets, #1.50 ,

abungnitiin

£1.75 , $2.00 , £2.25 , #2.50 , +3.00 , +3.50 , +4.00 , *4.50 ,

£5.00 and #£5.50 , for the purpose of experimentation. The

resultant set of estimates, 8% | and 0% , wnich was
V-min V-max

obtained by using each of these eleven intervals, is given in

Table 7-1. We can see that the value of decreases as

*
eV—min E
the lower endpoint of the interval 6 , decreases, and that of
sa—max increases as the upper endpoint, 8 , increases, as

is expected from (7.8). In order to find out if (7.1) is

satisfied, the two quantities, § and S,, , such that {1

L U
e |
5 = 5 ¢ P,(8) de
V#V-max 8
(7.9) 5
SU = z PV(G) dse

V#V-min 8]
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TABLE 7-1

Eleven Sets of Estimates, 6 and

g—min eG-max ’

of Ability for the Two Extreme Response Patterms,

(0,0,...,0) and (1,1,...,1), Obtained on LIS-U,
Using Eleven Different Intervals for (9,9) .

g,'g 6G-min e\’;—max
*1.50 -1.47883 1.52237
+ 1,75 ~1.64702 1.65605
+ 2,00 -~1.79255 1.77649
£ 2,25 -1.92540 1.89233
+ 2.50 ~2.05136 2.00754
*+ 3.00 -2.29490 2.24127
+ 3.50 ~2.53641 2.48011
* 4.00 ~2.77945 2.72254
+ 4,50 ~3.02430 2.96720
+ 5.00 -3.27051 3.21329
+ 5.50 -3.51765 3.46032
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were computed, :ind presented in Table 7-2., We can see that these

values are very close to the areas, which are obtainable if we

include all the response patterns, and are equal to (ec-g) and
(8 - GC) , respectively; in fact, the discrepancies of § and

L
SU from these values are approximately 0.00037 and 0.00035

>
respectively, in each of the eleven cases, the fact which
indicates the satisfaction of (7.1).
The regression of #* on ability & , which is given in
the first two lines of (7.5), was computed by using each of the
eleven sets of e%—min and eV—max , and the first five cases
are presented as Figure 7-1. In each of these five graphs, the
regression, E(e*]a) , 1s drawn bv a solid curve, and, for the
sake of comparison, the regression of the Bayes modal estimate with
n(0,1) as the prior is plotted by dots, together with the
s0iid straight line which indicates the unbiasedness. We can
see in these results that all the regressions of 8% on 6
are closer to the unbiasedness than the regression of the Bayes
modal estimate, and, in fact, for the first three cases in which
the interval, (», &) , is (-1.50,1.50) , (-1.75,1.75) and
(-2.00,2.00) , respectively, E(6%|8) is very close to the
straight line within the respective intervals, (Q, 6) . The
departure of E(G*lo) from the unbiasedness becomes greater as
we change the interval to (-2.25,2.25) and (-2.50,2.50)

, the

result which was aanticipated from the test information function
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TABLE 7-2

Sum of the Areas, S Under the Curves of pv(e) .

L ?
; Excluding PV-max(e) , for the Interval (6, ec) ,
1

and the Sum of the Areas, SU , Under Pv(e) .

Excluding PV-min(e) , for the Interval, (ec, 8) ,

| Together With Their Sum.

) Sy, Sy Total

s +1.50 | 1.49083 1.50845 2.99928
| £ 1.75 | 1.74083 1.75845 3.49928
;f £ 2.00 | 1.99083 2.00845 3.99928
V; + 2,25 | 2.24083 2.25845 4.49928
' £2.50 | 2.49083 2.50845 | 4.99928
; +3.00 | 2.99083 3.00845 5.99928
| +3.50 | 3.49083 3.50845 6.99928
! £ 4,00 | 3.99083 | 4.00845 7.99928
{ £ 4.50 | 4.49083 | 4.50845 8.99928
# +5.00 | 4.99083 | 5.00845 9.99928
% +5.50 | 5.49083 5.50845 | 10.99928
!
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FIGURE 7-1

Regression of the Maximum Likelihood Estimate with Those for the
Two Extreme Response Patterns, (0,0,...,0) and (1,1,...,1),

* *
Replaced by ev-min and ev—max , Respectively, on Ability

6 (Solid Curve), Together with the Regression of the Bayes
Modal Estimate with n(0,1) as the Prior (Dotted Curve) .
These Two Estimates Were Obtained by Using 6 = -1.,50 and

6 =1.50.
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FIGURE 7-1 (Continued)

% % - o ° -
°v-nm and Bv Were Obtained by Using g 1,75 and 6 = 1,75 .,
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FIGURE 7-1 (Continued)

* * = . --
°v-m1n and eV—max Were Obtained by Using # 2.00 and 6 = 2,00 .
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FIGURE 7-1 (Continued)

Were Obtained by Using 6 = -2.25 and 6 = 2.25 .
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Were Obtained by Using © = -2.50 and § = 2.50
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of LIS-U shown in Figure 3-1. As we can see in this figure, the

test information function, I(8) , assumes very small values

A 52 (Rl aatf i e e

outside of the interval, (-2.00,2.00) , which are, in fact, less

e A e gl

than unity, and, therefore, we should nct expect.it to measure the
individual's ability accurately outside this interval. Thus it

will be best to use -1.79255 and 1,77649 as the substitute

for the maximum likelihood estimates for the two extreme respomnse

patterns for this test with the above restriction of the range of
8 , or to use either one of the two sets, -1.64702 and 1.65605

with the restricted range of (-1.75,1.75) and -1.47883 and
1.52237 with the restricted range of (-1.50,1.50) . These

are suitable selections, considering the fact that the least

value of the maximum likelihood estimates for the remaining 126

response patterns om LIS-U is =-1.3167 for the response pattern,
(0,0,0,1,0,0,0) , and the greatest value is 1.3028 for the

response pattern, (1,1,1,0,1,1,1) . Similar graphs for the

other six cases are presented in Appendix as Figure A-1l. We

can see that, as the interval, (8, 8) , becomes larger, the

departure of E(e*le) from the unblasedness becomes greater, h

which indicates that these sets of estimates are less and less

suitable for use as 6% .~ and 6% .

The maximum likelihood estimates for the other 126
response patterns on LIS-U are also presented in Appendix, as




VIII Discussion and Conclusions

Bayesian estimation was considered in comparison with
the maximum likelihood estimation from the standpoint of the
objectivity of testing, which is closely related with the
unbilasedness of estimation and the population-free estimation.
Using several different types of tests, including both paper-
and-pencil tests and computerized adaptive tests, the effect
of priors on the resultant estimate was observed. It was
pointed out that the use of priors in Bayesian estimation will
result in bilases which favor certain individuals over certain
other individuals, even though they are exactly equal with
respect to their ability levels. An alternative method of using
the maximum likelihood estimation with the replacement of
positive and negative infinities for the two extreme response
patterns, (0,0,...,0) and (ml,mz,...,mn) , by a pair of new
and 6%

g%
V-min V-max

regression shows less amount of bias than Bayes modal estimate

egtimates, » was proposed, and the resulting
does. We must emphasize that, unlike Bayesian estimates, this
modified maximum likelihood estimate, 6% , is a population-free
estimate, so that all the individuals on the same ability level
are treated fairly and equally, regardless of the populations
from which they are selected.

There exists some philosophical problem in Bayesian

estimation which we must call our attention to. In any

L Mmai me e swm—aex




Bayesian estimation, we assume the interchangeability of individuals

who are assigned to the same prior. The idea of measuring
individuals' ability itself preassumes, however, the heterogeneity
of individuals, even though they belong to the same population,

which implies that the individuals are not interchangeable. In

addition to this fact, it should be noted that the assignment

of an individual to a specific population is more or less arbitrary.
Most researchers use such attributes as age, sex, ethnic background,
and so forth, for defining populations. Note that they are only

a partial information about an individual, even if we combine a

few of these attributes. Thus it happens frequently that a Ph. D.
in psychology with a certain ethnic minority background is

assigned to the group of Ph. D.'s in psychology, or to the

group of people with the same ethnic background. The resultant

two Bayesian estimates for this person can be substantially
different from each other, depending upon the difference

between the two priors. To avoid this contradiction, we must
accurately specify the population to which each individual belongs,
taking the intersection of thousands of factors, including

sex, age, education, ethnic background, etc. If we do this,

we will end up with assigning each individual to his own prior,
which is shared by no one else. If we know such a prior, however,
we do not need to test him at all!

From all aspects, we must conclude that the common belief

—
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in the superiority of the Bayesian estimation over the maximum
likelihood estimation in the ability measurement is a farce,
and the additional information, the ptio;, is nothing but a
resource for the blases, which may lead to unfair personnel

selection and other serious social issues.

4
!
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TABLE A-1

Sequential Results of Simulated Tailored Testing for

Hypothetical Examinees of Eleven Different Ability

Levels. Maximum Likelihood Estimation (MLE) Was
Used for Ability Estimation.
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TABLE A-2

Sequential Results of Simulated Tailored Testing for
Hypothetical Examinees of Eleven Different Ability
Levels. Bayes Modal Estimation (BME) Was Used for
Ability Estimation, with the Prior, n(0.0,1.0) .
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TABLE A-3

Sequential Results of Simulated Tailored Testing for
Hypothetical Examinees of Eleven Different Ability
Levels. Bayes Modal Estimation (BME) Was Used for
Ability Estimation, with the Prior, n(0.0,0.8) .
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TABLE A-4

Sequential Results of Simulated Tailored Testing for ;-
Hypothetical Examinees of Eleven Different Ability L.
Levels. Bayes Modal Estimation (BME) Was Used for
Ability Estimation, with the Prior, n(0.0,0.5) .
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TABLE A-4 (Continued)
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TABLE A-4 (Continued)
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TABLE A-4 (Continued)
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FIGURE A-1

Regression of the Maximum Likelihood Estimate with Those for the
Two Extreme Response Patterns, (0,0,...,0) and (1,1,...,1),

* * ‘
Replaced by av-amin and ev-max » respectively, on Ability :

8 (Solid Curve), Together with the Regression of the Bayes i1
Modal Estimate with n(0,1) as the Prior (Dotted Curve) .
These Two Estimates Were Obtained by Using 6 = -3,00 and K

8 = 3.00. B I
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FIGURE A-1 (Continued)

O ain 209 ©)_,, Were Obtained by Using 8 = -3.50 and 6 = 3.50 .
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FIGURE A-1 (Continued)

| e‘?-min and 9{; max Were Obtained by Using g = -4,00 and 6 = 4.00 .
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Patterns on LIS-U,
Patterns,

TABLE A-5

Maximum Likelihood Estimates for the 126 Possible Response
Excluding the Two Extreme Response

in Which All the Answers Are Incorrect, and
All of Them Are Correct, Respectively.

In this table,

{3 uged instead of 1 for the correct answers.

Response Number of
Pattern MLE Iterations
- 211111) =1.2260 6
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) S B 5 B S s G 1-Y-) B -
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. -~ 122111} =0.5030__ 4
ag 2221111 =0.1602 3
=9 »L31121LL . <.=L.316T "6
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22 2121211 ~ =0.3400 "5
53 1221211 Q. 1515 e
24 —_R2z1211 ~Q.,2005 4
25 Ll12211 _=0,2231__. 5
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S 71112121 2£=0.5503 = -

1 {is used instead of 0 for the incorrect answers,
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TABLE A~5 (Continued)

Response Number of
Pattern MLE Iterations
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Note: 1In this table, 1 1is
and 2 {s used {nstea

used {nstead of 0 for the
d of 1 for the correct answers.

incorrect answvers,
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TABLE A-5 (Continued)

Response
Pattemm
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Number of
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Note; 1In this table, 1 18 used instead of O for the incorrect answers,
and 2 1s used instead of 1 for the correct answers.
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